If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+29X+203=0
a = 1; b = 29; c = +203;
Δ = b2-4ac
Δ = 292-4·1·203
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-\sqrt{29}}{2*1}=\frac{-29-\sqrt{29}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+\sqrt{29}}{2*1}=\frac{-29+\sqrt{29}}{2} $
| 1/3d=6 | | 11+m=1/4m- | | 3x+5+8×-12=180 | | 1/4.x=3 | | 64-8x=-32 | | 20(x+5)=180 | | 6^3n=43^5n-4 | | R(x)=5x-0.01x5/2 | | 49^x=15 | | 6x-9=2x+27 | | 7-5s=2-4s | | 11^10x=15^x+2 | | (3-m)+(7L+14)=1+7 | | 21x+41x=6+30x | | 7t-4=10 | | 20+8n=6(6n+8) | | 0,6t+5=1-t/3 | | (3x+22)+68=180 | | 200=110^x | | (4+l)+2=9+14 | | (6x–3)=(6x–4) | | 1,2n=0,5+1/5n | | 5÷m=-3 | | 5.8a+10=62.2 | | y=(3)(4)+10 | | -5x+36=-24 | | x-1/2=0,75 | | s-5=25.97 | | s-$5=$25.97 | | 17x+11x=13+4x | | 4/50=x/5750x= | | 3(x+4)-2(2+2x)=3(x-6x+12+2) |